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Abstract. In this work we make use of classical analysis for electrical conduction with one or
two boundary conditions. The space charge is defined by free holes and electrons as well as
by trapped electrons, Different interactions between carriers such as carrier recombination and
generation are considered. We have determined the conditions in which a metai—solid-metal
system can act as an n-p junction. Also, we have determined the conditions in which the
current=voltage dependence can be strongly non-linear and discontinuous.

1. Intreduction

Numerous analytical methods describing double injection in insulators have been proposed.
Fundamental concepts for double injection are a regional approximation method [1-4] and
small-signal theory [5,6]. Those concepts contain fundamental physical processes, but
the mathematical methods are not mathematically clear. Usually, in these methods the
divergence of the electric field has been equal to zero. With this assumption, boundary
conditions are very limited. In the case of strong asymmetric double injection, this
assumption is not possible. This assumption ought to be determined by boundary functions
describing the mechanisms of carrier injection from the electrode into a solid.

The purpose of this work is to present our theoretical analysis of this problem and to
find new current—voltage characteristics for space-charge conditions.

2. The model system and the basic equations

The nature of the space-charge phenomenon in solids can be explained by the behaviour
of the electrons surrounding the positive atomic nucleus in terms of the total energy of the
electrons. The total energy is the sum of the potential and kinetic energies. This energy
of every electron in the normal atom is a negative quantity. A zero reference level for an
electron is at an infimte distance from the nucleus (in the case of an isolated atom). It is
very well known that there exist only discrete energy states that are permissible in a given
atom. The electrons occupying these states can absorb or emit discrete amounts of energy.
Under these conditions, the electron must pass from one state to another. The addifional
kinetic energy can be given by a photon, a phonon or an external electric field. In solids,
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Figure 1. The o-Zn$ (left) and B-ZnS (for ¢-CdS 2nd S-CdS} crystal Iattices. The «-ZnS
(the regular system) structure is typical for diamond, Ge, Si and 5-SiC. Diamond, ZnS and
SiC are typical insulators (table 1). For diamond, ZnS and Cd$, a strong effect of light on
electrical conduction is observed. In the case of CdS, a strong effect of y-radiation on electrical
conduction gocurs.

S ~ -
//’)r ‘O\,_r //’ !
-
o O
! A :
[ I f I
I i
| { L 4 qu) I
f : ¥ #
1 [ [
{ S fj_‘:;'-"—;:‘
T O T
P - N
‘:{.:"__L—-" O\ [ I
®Ti Qo

Figure 2. The Se long-chain structure {(amorphous Figure 3. The TiO, crystal lattice, This material is a
solid). Selemium ig a typical photoconductor. In the  typical insulator (fable 1) with large relative dielectric
absence of light the Se structure is 2 good jnsulator.  constant g, = 114,

The As:Se mixture has the same electrical properties.

atoms are spaced closely together (as an example, the structures of ZnS, Se, TiO, and SiO;
are shown in figures 1-4).

Thus, many more permissible energy states are available because of the interaction
forces between adjacent atoms (figure 5). However, in the case of pure insulators (some
insulators are shown in table 1) the electron with the greatest negative energy (the valence
electron) cannot absorb additional energy in small amounts. In general, in impure crystalline
or amorphous structures there exist many crystal defects, pollutants and impurities (figure 6).
Thus, the concentration of atoms can be sufficiently great (figure 7). Under these conditions
the valence electron can absorb additional (phonon and photon) kinetic energy in small
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Figure 4. The $iQa regular (left) and hexagonni crystal lattices. This material is a typical
insulator {table 1).

amounts and occupy a higher energy state (the trapping level). In figure 8, this is illustrated
by arrow 4. If the additional (phonon and photon} kinetic energy is sufficiently great, then
this electron can occupy higher trapping levels {figure 8, arrow 3). In particular, the trapped
electron occupying the highest trapping level can pass to the zero reference level (figure 8,
arrow 6). The vacancy (hole) left by the trapped electron represents an unfilled energy state.
Such electron transition defines electron-hole pair generation.

'/’J o,

a) b yj d)

Figere 5. The splitting of an energy level in an atom. (a) The given energy level of an isolated
atom. (b) The spiitting of this level in the ¢ase of two atoms. {¢) The splitting of this Iavel in
the case of four atoms. () The same situation in the case of many atoms. The total energy of
a valence electron in a given atom is denoted by W.

The inverse process occurs under low-temperature conditions and in the absence of light
and radiation. Under these conditions, the free and trapped electrons lose a portion of the
kinetic energy because of the Coulomb force between the given electron and the positive
nucleus of an adjacent atom. Thus, the free electron can pass to the empty energy state
of the adjacent vacancy (figure 8, arrows 1, 2 and 3). Such electron transition defines
electron-hole recombination.

If additional kinetic energy is given by an external electric field to the free electron, then
electron flow with mobility t, occurs. Also, the external electric fleld can pull away the
valence electron from a normal atom when the total energy of this electron is sufficiently
great, In this case, the valence electron can pass to the unfilled energy state of the adjacent
vacancy. This valence electron flow is equivalent to vacancy (hole) flow with mobility .

In general, the number of generation-recombination parameters is very great. In order to
find analytical or numerical solutions, it is necessary to know the relations between them. In
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Table 1. Some insulator and semiconductor materials,

Band gap
at =300 K

Material (eV) Property

S0, 8.0 insulator

Al2O3 58 insulator

C (diamond} 5.4 insulator

8n0y 3.71 insulator

Zns 3.58-3.67 insulator

TiO; 3.67 insulator

ZnO 32 insulator

SiC ~3 insulator

AlP ~25 insulator

Cds 24 insulator

B-SiC 23 insulator

ZaTe 2.3 insulator

GaP 2.24 insulator

AlSb 1.60 semiconductor

GaAs 1.45 setniconductor

Si 1.10 semiconductor

GaSb 0.67 semiconductor

Ge 0.66 semiconductor

Se _ insulator
semiconductor

As:Se —_ insulator
semiconductor
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Figure 6. The possible defects in a ¢rystalline structure, (a) The perfect crystalline structure
formed by the A and B atoms. (b) Some A atoms are replaced by B atoms. {¢) The solid
interstitial solution of the C atoms. (4) The solid interstitial solution of C and B atoms (the
arrows indicate Frenkl defects), and B atoms raplaced by C atoms.

order to avoid this difficulty, we have grouped the trapping levels into two levels (figure 8).
With this assumption, electron passage from lower to higher energy level is characterized
by the generation parameters vp, ¢2) and vy. Electron passage from higher to lower energy
level is characterized by the recombination parameters ¢,, ¢12 and Cp.

In the theoretical analysis we make the following assumptions:

(i) A planar capacitor with anode x = 0 for injecting holes and cathode x = L for
injecting electrons will be used (figure 9).
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Figure 7. The possible maximal concentrations of atoms in space. The atoms are interpreted
by spheres with the same radius. (a) The regular system with coordination number = 12. (b)
The regular system with coordination number = 8. (¢) The hexagonal system with coordination

number = 12.
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Figure 8. The energy diagram and allowed electron transitions between trapping levels. W is
the total energy of an electron, (+) and (—) denote the anode and the cathode, respectively. The
transition energies are: 1, cnNyn: 2, ci2Npny; 3, Cppne; 4, vpyNp (and the hole activation
energy is Wy = Wi — Wy); 5, ca1Nunyg; 6, vany (and the electron activation energy is
Wo=—W1): 7, unnE; and 8, u,pE.

(ii) The potential barrier width at the anode and the cathode is much smaller than the
mean free path.

(iii) The mobilities of the free carriers are independent of the electric field intensity and
carrier diffusion is unimportant.

(iv) There are no surface states at the metal-bulk contact.

For such internal processes we shall define the space-charge transport equations. These
equations are the Gauss equation, the continuity equation, the generation—recombination
equations [7-9] and the field integral, which are written for the planar capacitor system as
follows:

dE(x,t)
e =q[px, 1) = nlx, 1) —nyx, 1) — nalx, )] (1
ap(x$ t) an(x, t) anll (xv t) antZ(x7 t)
ot ot at at

=0
(2)

d
a{mnn(x, ) + ppp(x, D1E(x, 1)} +
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Figure 9. The planar capacitor systern: |, the anode; 2, the cathode; 3, solid {insulator or
semiconductor); a and b, the voltage {or current) terminals; gy, the space-charge density; and J,
the total current density.

dnnix,t
_ﬂé(-z-_) = caNyn{x, 1) + ca1 Nunelx, £} — vanta (x, ) — c12Npnmu (x, £) Ny > ny
(3)
an&(xs t)
3 = Voo + c2Nony {x, 1) —en Nunp(x, 1) — Cpp(x, Onplx, £) No > ng
0y
an(x,t 9
518 — (5,0~ calane. 1)+ -, DE G )] )
L
f E(x,t)dx = V = constant V>0 &)
0

Here g is the electric charge, £ the dielectric constant, x the distance from the electrode,
¢t the time, E the electric field intensity, p the free-hole concentration, n the free-electron
conceniration, #y; and sy the trapped electron concentrations in the first and second trapping
level, Ny and N the concentrations of traps, L the distance between the electrodes, and V

the applied voltage. In equations (1)-(5) we have assumed that N, > n,, that is, the bulk
acts as an unlimited reservoir of carriers. For such a space-charge transport model we shall
find the current—voltage characteristics.

3. The solution of the problem

From (1)-(6) it follows that the steady state of electrical conduction is described by

e dE(x)
q dx

J =gEX}pan(x) + ppp(x)] J = constant (2a)

= p{x) — n(x) — ny(x) — no(x) (1a)
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Con(x) — vana (x) = Cianta (x) — Cynn(x) (3a}
Cizna (x) — Canp(x) = Cop(X)na(x) — vNo (4a)

d
a[unn(x)E(x)} = Cun(x) — Vony (x) (5a)

L

f E{x)dx = V = constant V>0 (6a)

0
where C; = Ny, Ciz = c1aNp, Ca1 = cnNy. We shall consider two particular

forms of the electric field distributions E(x} determining the space-charge density. These
distributions are as follows: the space-charge distribution edE/dx is determined by
two mechanisms of carrier injection, that is E(x) = E(x,J, Cy, C3); the space-charge
distribution edE /dx is determined by one mechanism of carrier injection, that is E{x) =
E{x,J,C)). Here C; and C; are constants of integration.

It is very well known that electron and hole emission from the metal into the bulk can
be described by the following mechanisms [10-14]:

(i) quantum-mechanical tunnelling through the barrier (the field emission cwrent,
figures 10(a) and (b)),

(ii) quantum-mechanical tunnelling through a part of the barrier (the thermionic field
emission current, figure 10(c));

(iii) electron emission over the top of the barrier (the thermionic emission current,
figure 10{d)}; and

(iv) recombination in the depletion region (the recombination current, figure 11).

{a) l {b) I
{c}) (d) .\

Figure 10. The possible mechanisms of electron transition through the potential barrier: (@}
ohmic field emission; (b) field emission; {c) thermionic field emission; and (d) thermionic
emission,

With assumption (ii) from section 2, the emission current density J depends on the
barrier height and on the electric field intensity Ey at the injecting contact. This boundary
function can be written as J = f(Ep), where f; is the function describing the mechanism
of carrier injection from the electrode into the buik.
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« electron
O hole

Figure 11. Recombination in the depletion region at the anode. The barrier width is d.
For the function E = E(x, J, Cy, C2) the voltage condition (62) is of the form

V=./:E(x.J,C|,Cz)dx=V(J,C;,Cg) (6&)

and
EM=E(x=0,J.C,C) and E(Ly=E(x=L,J,C;,C3). (6c)
H the current-voltage characteristics are to be evaluated, it is necessary 1o give two
boundary functions J = fol E(0)] and J = fi{E(L)}] describing the mechanisms of carrier

injection from the electrodes x = 0 and ¥ = L into the bulk, respectively. Thus, the
current—voltage dependence can have the parametric form

V = VI[E@©), E(L})] J = fRlEQ)] I = fL{E(L)] (6d)
for double injection. In the case when E = E(x, J, C}), then (6d) resuits in

V = VIE)] J = fol EO)] (6e)
for injected holes or

V =V[E(L)] J = fLlEW)] &N
for injected electrons. In what follows, we shall find the functions J = J(V) or V = V(J),
which can be evaluated by the use of (6d){&f).

In this section we shall consider a few of the cases of internal interactions between

carriers for which the analytical form of E(x) and of the current—voltage characteristics can
be found.
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3.1. The carrier recombination conditions

In this section we shall consider the case of asymmetric double injection for carrier
recombination. In this case we assume that v, = v, = ¢ = 0 in (3a}+(Sa). Next,
introducing the new variables A;, Az, A3, A4 in the form

Ay =gquopEfd  Aa=quunElJ

Az = gqponn EfJ As = quangEJ/J @
we obtain the following equations

pAI+ Ay =1 P = o/ thn ®

pnE dAs/dx = CoAy )
which result in

_eGdE _ A G gmeGE (10)

pJ d4 A Ciz  CplA;

The analytical form of E(x} will be found when (i) Cy £ Ciz and ¢ = Cp, (i) Ny > n
and Ny > p, and (iii) 4; < 1/(1 + p) (a case of strong asymmetric double injection}.
With these assumptions, we obtain

dE/dA) = gupE/eCprA) (10a)
and therefore

E = K,Af X = qup/eCo (108)
where K, is a constant of integration. Next, taking into account (105), (9} and (8), we have

Ha Ko (1 — A

da, = C,dx. 1
pXA2 2 n ( )

The solution of equation (11) has the form

X 1 . X

lﬂAz-I-Z—. ().()(—-Az)‘ = 'O—Ci{+K’ K' = constant (11a)
i=1 l : #'IIKI

for natural values of y. Using the power-series representation to the logarithm and limiting
the power series to the power x -+ 1, the result (11a) takes the form

O =AY T kN ] @A prCx
Z[":— I.(z.)( Az)]— T T Lk TK

i=1

Let us notice that the sum of terms containing the power (—A2)* in the expression
X (1 — A /i, where k =1,2,..., x, takes the value

w1 x
(—Az) E(k)
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Thus, equation (115} leads to

X I(x+0)
Al_l(;{z_(x_“M) (12)

- ta K

where K> is a constant of integration. Hence on the basis (10b), we obtain the electric field
distribution in the following form

~ (x + l)cnx)X/(X+U

E(x)=K (K
’ g K

Ky = Ky/p*. (13)

By calculating the integral (6a), we get the current—voltage dependence in the parametric
form

_ ((+ DLEG - B

2% +1 EEO) - EEL)

i=(x+1/x (14)

and J = folE(0)], J = fLlE(L)].

For example, when the boundary functions f; and fi describe the tunnel effect in the
form J = apE%(0) and J = ay EX(L) (a; > ap) or these functions are linear, then we have
J ~ V2 or J ~ V, respectively. Different experiments, for low-temperature conditions,
show that the linear and quadratic functions J({V) occur at low- and high-voltage conditions,
respectively. For another example, with Schottky injection at the boundaries x = ( and
x =L sothat J = Jy exp(boE('O’f) and J = Jpexp(by E(lg)(bL > bg), then the function
J(V) is J ~ exp(constant x V!/Z), Similarly, for the Pool boundary function, we get
J ~ exp{constant x V). These functions, at the same temperature condittons, are acceptable
for the mean values of V. In the case when yx is a rational number x = m/#n, we can make
use of the following substitution

'=1- Ay =pA, dA; = (—n)z" " dz (15)
for which equation (11) takes the form

(=m)z"z"! P Ca
dz= dx. 16
] e z® oK (18)

Hence, we get

m)ncnx

Z
" In(1 — ") — mf 2" UIn(1 — z")dz = p + K {an
0 729 .41

where K’ = constant. Since z « 1, the function In(1 — z") may be expressed by a power

series. By combining (17a) and Limiting the power series to the first approximation, we
obtain
nzm—l—n prn/ncnx

— = + K’ 17a
m-n Un K1 (17a)

Next, taking into consideration the substitution (15) and ¥ + 1 = (m + n)/n, we notice
that equation (175) results in (12) with the constant K; = —K'(x + 1}. On this basis we
ascertain that the current—voltage dependence (15) is satisfied for rational values of x.



Bipolar space-charge problem 2573

3.2. The carrier generation-recombination conditions with immobile positive charge pp, =0

Now we shall take into account the problem of space charge when there is no electron
transition from a normal atom to the adjacent vacancy. With additional assumption of
coefficient equality Cy; = Ca;, we have

Co 1 (¢ o) ?vp Npp E*
Ay =1 Ar=Ay=— = — Al=———-rer——— 1
2 3=A= o= I 72 (18)
Hence, on the basis (3a)}~(5a), we obtain the differential equation
EdE 2y, Npbp E? 2
sinE dE _ (qua) vpNoGE” 1+_) (19)
J dx CpJ? %

for which the general integral has the form

J 28x \1'*
E= B |:6+CEXP( P“nj)j] (20)

6=1+2/8 B =(qun)vpNab/Cp

where C is a constant of integration, which can be expressed by the boundary value for

x=1L
' _ {BEXL) —2BL
C= ( T 9) exp ( il ) . (20a)
From (20), (20a) and (6a) it follows that the voltage function V = V{(E(L), J) has the
form
SMng Bl 8!/ |[BVEE(L) — J8' 2B E(0) + 764
Y=g ( (EL) = EQT+ 5= 15 E @) + 6B TREQ) - J0VA] )
(21)
where
EQ) = — {9 [1 - ("zﬁL)]+ PENL) (_zﬁL)}m @1
= 57 exp P 72 exp o . a)

Therefore, the current—voltage characteristic is described parametrically by (21) and (214)
and the boundary function J = f;[E(L)]. In the most simple case when the boundary
function is linear J = (8/9)!/2E(L), we obtain Ohm’s law J = o V/L with the conductivity
parameter

_ gia(vpNed)'/?

= . (22)
G2 (1 +2/60)'2

An interesting case occurs when the electrode x = L injects an infinite quantity of
electrons, that is E(L) — 0. Then, (21} and (21a) yield

_ 1/2
-7 1-en (2]

(23}

V=m—

epnd? | 612 ] 141 —exp(—28L/eiyJ)]7?
g |2 1= {1 —exp(~28L/eua 1))/
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and additionally, for values of the current density J 3 28L /e, we have

e J? [9172 (1 + W 1 28L 172
= - In| —— ) —pl? = .
V 7 [ 2 n =W g W W e (23a)

Expanding the logarithm as far as terms in W, we obtain

_eund [ 1 w? 2w} _ CITMC LN L
V—‘B3—/2[9 IV+T - g\ eW ——-—EB—;E—-W (23b)

or the equivalent form
J=3eu 07 V/L? (23¢)
which is Child’s law.

3.3. The hole—electron pair generation

In this section we shall consider the problem of space charge when carrier generation is
dominant. In this case we assume that C;, = Cj2 = €, = 0 in (3a2)—(54). Under these
conditions, we obtain the following differential equation

dE/dx = a((x — x0)/E — (24)
where

{1tp -+ tn)qvpNi2
o) =—

Efinitp
qpNe 1 1
— — 4 — 24a
o2 £ (Cz: Uy (244)

f(p + DAy(L) — 117

=L+
o (0 + Dgv,Ng

The boundary parameter xg is the constant of integration.
From (24) we get two singular solutions

Ei{x) = 21(x — xp) Ez(x) = za(x — xp) (24b)
where
212 = —3ap £ 1o + day)? 71> 0 22 <0 (24¢)

for xo < 0 or xg = L, respectively. Using the integral condition (6a), we can find the
relation between the voltage V and the boundary parameter xp in the form

V = Hzo(L — x0)* — zaxd) = LL2E(L) — 2L} (24d)
forxg 2 L, or

V =3z (L — x0)* — 21x5] = LI2ZE(0) + z1 L] (24e)
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for xg £ 0. Hence, it follows that the current—voltage dependence J(V) is determined by
the boundary function J = fL{E(L)] or J = fol E(0)] describing the mechanism of carrier
injection from the electrode x = L or x = 0 into the bulk. Since E(x) 2 0 for x € {0; L},
this dependence is as follows:

J = fLl(V — Vig)/L) for V > Vi = |z2L%/2 (24
or
J = fol (¥ — Vo1)/L] for V > Vo, =z L%/2. (24g)

From (24a) it follows that the constant of integration A2(L) depends on the boundary
values E(L) in the form

gupNoE(L) 1

An(L) =
2(L) |z2ld o+ 1

E(L) = z2(L — xp).

Since A»(L) < 1, the boundary function f; and the boundary parameter E(L) must satisfy
the following condition

plza| fLlE(L)]

4o+ DyNo’ @48

E(L) <

Analogously, proceeding for the condition Az(0) < 1, we can find the condition for the
boundary function f and the boundary parameter E(0). It is worth noting that the Schottky
function and the Fowler—Nordheim function as well as the power boundary function fulfil
the condition (24k). Returning to (24). we can find the general integral in the form

y:
= Clx — xo] (25)

gl E

X — Xp

— 22

where

v =—z1/(z1 — 22) y» = 22/{z1 — 22)

and C is a constant of integration. With the additional assumptions that v, = vy, = Cz and
4a; > af (carriers are not too mobile), equation (25) can be written as

E —1/2 ~1/2
—o}? —— 4 a?|  =Clx - x| (250)
X — Xy X — X0
Hence, we obtain the electric field distribution
E(x) = [K +ai(x — x0)"1'" (26)

where K is a constant of integration. Substituting (26) into (6a), we get

E(L) +al(L — xo)
E(0) —ajxg

I(K

V== _..In
172
2\al

+ (L —x}E(L)+ on(O)) . (27
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The constants of integration X and xg can be expressed by

[E*(0) — E*(L) + oy L7 EX0) — E*(L) +a;L?
Xo = .

= Etoy —
K ©) 4o L2 0 2a,L

(28)

Thus, referring to (64), we remark that two mechanisms of carrier injection from
the electrodes x = 0 and x = L into the bulk, which are described by the boundary
functions J = f[(E®)] and J = fL[E(L}], define the current—voltage characteristics
in parametric form. It is possible for the boundary functions f; and fi to be identical,
FE@] = fLIE(L)], that is E(0) = E{L) and xo = L/2. Then, the functions (27)-(28)
lead to the current—voltage dependence V = V(J) in the following parametric form:

-1/2

_ T (g Ll
V=2 (E(L) 4)m

E(L) + 1oL
E(L) — Loy’L

+1LE(L)

29
J = fLlE(L)].

From (29) it follows that V — V| = /> L%/4 and dV/dE(L) — o as E(L) — a|*L/2.

If 7 = fL[E(L)] is monotonic, then dJ/dV — O and J — Jp = fL(ZW/L) as

V — V;. Thus, the function J{V) is defined and differentiable for all vaiues of V > Q. If
E(L) € &’ L/2, then (29) results in

E(L) = (Gay LV)'? and J = fLlE(D)]. (292)

If E(L) » a)/2L/2, that is, the electric field becomes uniform, then J = fi(V/L).
Finally, we ascertain that the inverse function to (29) is typical for a blocking diode. For
the characteristic (29), the space-charge density g, (x) has the form

gy(x) = o) (x — L/2)/E(x) E(x) > Q. (296

Hence, it follows that a negative charge is distributed in the region 0 € x < L/2 and a
positive charge in the region L/2 £ x < L. Therefore, the system acts as an n—p junction.
3.4. Absence of electron transition between trapping levels

A space charge can be formed when electron transition between trapping levels does not
occur {the case of insulators). In this case we assume that Cy3 = Cy = 0 in (3a)-(5a),
obtaining

Az(x) = Ay(L) Az = A1 /6 8o = va/ Cp

(30)
As=8(quaEY /A2 Ar=(1—Adma/by G =wNa/Cp

EdE 9 2
£ftn & o w - E? w]__p(ﬂg)

=2\ o =A; — Ay — Ay =constant  (31)

where A,(L) is a constant of integration, From (31) we get the function E(x} in the form

P n
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where C is a new constant of integration. Next, expressing the constant of integration by
the boundary values E(0) and E(L), we get

EX0) = apJ?+C EX(L) = g J? + Cexp(—26L /). (32a)

Let us note that equations (32a) result in a transcendental equation for the constant o
or A;. For (31) the voltage conditions {64) can be written as

L E(L) dx £in E(L) E2
V=f E(x)dx=f E—dE = ——dE, (33)
0 E{0) dE J EO o —'OCIEZ

In what follows, we shall discuss the importance of the parameter o for (33). In the
case when o > 0, then (33) becomes

_epna, HaE(L) + alla; E(0) —a] cha )
=372 "@EQ) —amEQ Tal| T Tt T B
a) =a’]l/2 a= ‘a|[/2. (33a)

If the electrode x = 0 injects an infinite quantity of holes, that is E(0) — 0, then (32a) and
(33a) result in

_gppa | E(L)+a _ Eln
S 2Jad |aE(L) —a]  Ja? ED (920)
and
E(L} = Clexp(=2psL/J) — 1] C = —opd (33c)

For values a; E(L) « a, we can expand the logarithm to obtain

€ ol
Ja}

a la} Elkn
—EL)+ -=E L)+ ) —
(a W+ 3 LWL + 7

V= E(L).

Next, taking into account only terms up to the power 3, we get

V = (gua 3T} E3(L). (33d)
In the particular case when J > 25yL, we have

EXLY e —2CBoL}J = 200f0LJ = (QuL/sp,)J.
Therefore, the curreni—voltage characteristic has the form

J = fi(3V/2L) (33¢)

where f; is the boundary function deseribing the mechanism of electron injection from the
electrode x = L into the bulk.
When ¢ < 0, then (33} leads to

V= Z?} (E(O) —E(L)y+ %{tan“'[bE(L)] — tan"‘[bE(O)]}) b=ai/a. (33
i
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Analogously, proceeding for E(L) -+ 0, we obtain the J (V) curve in the form
J = fo(3V/2L) (33g)

where fp is the boundary function describing the mechanism of hole injection from the
electrode x = 0 into the bulk.

When ap = =0, that is Ay = /{1 + pf) and A) = 8/(1 4 pf) where 6 =14 1/8,,
then the function (32) becomes

E(x) = EQ)exp(~fox/7}  E(0) = E(L)exp(BoL/J). (34)

Hence, on the basis (6a) we obtain the current-voltage characteristic in the following
parametric form

V= E%Q[exp(,sow) —11  and  J=fIEWD)] (34a)

For J 3» BoL the characteristic (34) leads to J = fr(V/L).

4. Discussion

In this section we compare our analysis with two analytical methods that have solved
the problem of double injection in solids. A regional approximation method for double
injection in insulators and semiconductors has been used by Lampert and Schwob [1-4].
In this method, positive and negative as well as quasi-neutral charge regions have been
distinguished in the region x € {0, L). These regions are as follows:

(i) the first region is x € {0, x;} {the anode region} in which edE/dx = fi(n, p) > O;

(i1) the second region is x € {x;, x3) in which edE/dx = faln, p) = 0;

{i1i) the third region is x € {x», L) (the cathode region) in which edE /dx = fz(n, p) < 0.

Here fi, f> and f5 are the given functions. With the boundary conductions such as
{a) E(0) = E(L) = 0 and (&) continuity of the electric field at the junction planes x = x,
and x = x3, the current-voltage characteristics have been obtained. These functions can be
J~V, J~ VL3 (Child’s law), J ~ V3/L% or J ~ V1 (Vy = V) where Vy and [ are
constant parameters characterizing the material.

A small-signal theory for the diffusion problem has been presented by Manifacier and
Henisch [5, 6]. In this method, the space-charge regions (i)—(iii) have also been distinguished
and x;, — 0 and x; — L when E(0) = E(L) =0 or E(0) = E(L) = V/L. With the
condition edE/dx = faln, p) =~ 0, the diffusion problem equations have been written as
linearized equations. The fundamental problem of this method is to find the functions p{x)
and n(x) as well as V (i, up) for the various boundary parameters dn/dx and dp/dx at
the planes x = 0 and x = L. Usually, in this method the current-voltage characteristic is
linear J ~ V.

According to our considerations, we notice that the space-charge regions are determined
by the transport equations (l1a)—{(6a) and the boundary functions fo[ E(0)] and fLLE(L)]
describing the mechanisms of carrier injection from the electrodes into the bulk. This is the
fundamental difference between our methodology and those theories.

In order to discuss the stationary state we ought to know the transient state describing the
space-charge transport. This problem has not been discussed by the regional approximation
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method or by the small-signal theory., On this basis we ascertain that the assumptions (i)~
(iii) of these theories are not mathematically clear. Also, with these assumptions the set of
solutions is very limited [15-20].

In order to show this problem let us return to our analysis. From (295) it follows that
the functions fi(n, p) and f2(n, p) are determined by the boundary functions fo[ E(0}] and
fLE(L)]. As another example, from the singular solutions (245) it follows that the function
E(x, Cy) characterizing the transport of one carrier can be determined by two mobilities
#p and po. In order to explain this mathematical detail we must take into consideration
{1)-(6). Next, using theory of characteristics for (1)-(5), we obtain the following ordinary
equations;

dxg/dt = —pn E{xq(2), 1)
dn(xa(t), 1) /dt = fu(n, p, na, na)

(35)

as well as
dp(xp(), £)/dt = fp(n, p, nu, no)

(36)

where f, and f, are given functions. Taking into account the boundary parameters
XafA) = L and xp(3) = O, where A is the initial time and A > 0, we ascertain that
double injection can occur when E{C,¢) > O and E(L,t) > 0.

With this assumption, the initial conditions p(x;(0), 0), n(xx(0), 0), ny(x, 0), rp(x, 0)
and the boundary conditions p(0, ¢t} and n(L,t) determine the transient state for double
injection. The fundamental problem of our considerations is to find the physical aspect for
the boundary values of p(0,¢) and n(L,t). In this paper we assumed that the convection
current J(x, ¢} and the electric field intensity are continuous at the plane x =0 and x = L.
From the field theory it follows that this assumption is equivalent to gs(¢)|7=% = 0 where g;
is the surface charge at x = 0 and x = L. With this assumption we can write the following
bourdary conditions:

J (0, 1) = glpan(0, 1) + pp p(0, DIE(D, 1) = fOlE(Q, )]

(37)
J(L,2) = glpan(L, ) + upp(L. DIE(L, t) = fLIE(L, )]

as well as

gE{x, 1) = fux gulx, ) dx +£E(0, £)
(38)

L
ELEQ, 1) = £V — f L -6 dx gy =q(p—n—ny —ng).
0
The physical importance is E(x,t) > 0 for x € {0, L} and ¢ = 0. Thus, this condition

defines a set of {V, f5, fi}. For such a set our considerations are valid. From (37) it follows
that the singular solutions (245) can be determined by

_ M (fIE@.D] )
POD= it ) ( B, Tt -
o JLlE(L, D] Ellp )
L.t)= _
LD q (i + thp) ( paE(L, 1) Hn 2+ 22)
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or by
B o Jol£(0, )]
0.0 = s (L2 s o) (40)
be [ SIEQ.O s )
Lt)= T ke '
AL g+ pig) (unE(L") 2T

Therefore, we see that singular solutions and current-voltage characteristics (24f) and (24g)
can exist. Analogously, from (37) it follows that the solution (34) is determined by the
condition

n(L,t) = fLIE(L, )]/[qua(l + pB)E(L, 1)].

In general, the main idea of the concept of space charge is to identify the internal and
boundary processes that occur in the metal-solid—metal system. Usually, this problem is
solved by the foliowing electric field conditions [21-38]:

(i) the transient state of the discharging capacitor, characterized by
L
f Ex,)dx =0 fort 20 4D
i
{ii) the transient state or the steady state of the charging capacitor, described by
L
f Ex.n)de=V{)#£0 fort 20 (42)
0

where the voltage function is usvally of the form V(r) = constant or V{t) = Vosin(wt),
and the parameters Vg and @ are given; and
(iii) the open system, in which the total current density J,(¢) is

() = edE(x, t}/at + J(x, 1) =0 (43)

where J, is the convection current.

In the above, by making use of the current-voltage characteristic J{V), we have
identified the interior and the boundaries together.

The interior is described by electron transitions between the lower and higher energy
levels (figure 8). Electron passage between the ith (lower) and jth (higher) trapping levels is
characterized by the coefficients ¢;; and ¢;;, which define the rate of change of concentration
by the equation

Ong /Ot = cpng Ny — ciphy Ny

where i,j = 1,2,...,m, and m is the number of trapping levels. The coefficients
Ci; = ¢;; Ny; and cj; have the form

Cji=vus; = u:'J:r,-“'U Cij = vioexp(—W;; /kT) (44)

where vy is =~ 10'? 571, £ is the Boltzmann constant, T the temperature, v the microscopic
electron velocity, s; the recombination cross section, rig the radius and Wy; = W; — W,
(figure 8). The radius ryg is determined by

Z:q*/(dmerig) = kT = im? 45)
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where Z; is the atomic number and m, is the electron mass. The condition (45) defines the
zero value of the total energy of an electron. In the case when the radius »; < rig the total
energy is negative. The space-charge density determined by electron passage between the
energy states is of the form

JIE -
ga = q((p - pg) — (1 —ng) — ;(ﬂu - nti,G))
and
Po=#g+ Znn’.o

i=l

where pg, np and ny g are the equilibrium concentrations characterizing a solid at the
temperature T > 0 K (the case of neutral traps). The frequency parameters v, and vy
are determined by the Boltzmann factor in the form

Vo = Vo eXp(—Wa/kT)  p = uo(~Wp/kT) 46)

where vy and vy are ~ 10'2 s~! and W, and W, are the electron and hole activation
energies (figure 8}, respectively. The parameter Coy is defined by the mean value of {Ci;}.
The recombination parameters are of the form

Cp = vsp = v:rrrl‘:‘ Co = USy = UTrl ciz = {cji). 47)

The radii r, and rp are determined by the condition (43). From (45) it follows that the
product vs depends on the temperature in the form

(Zg%)?
= . 48
4(2kTY 2 elm)? “8)

Thus, under conditions of low temperature and the absence of photons, the frequency
parameters vp, ¢z and vy are very small, that is vp, vp, €21 — O (this is also possible
when the energies W,, W, and W,, are sufficiently great). From (48) it follows that fime
constants t, and 77 defined by

T, = C!

n

Tz=C 1‘; (49)

are sufficiently small. For such internal processes, the space-charge transport is described
by equation (10). With the assumptions ¢, = €, and Cy < Cyz, that is

Zy =27, and Ty 2 112

where Z; and Z, are the atomic number in the first trapping level and in the valence level,
respectively, we have analysed equation (10). We can show that the assumption (iii) of
equation (10} is satisfied by (12)—+(14). The shape of the J(V) curve is shown in figure 12.



2582 B Swistacz

(1) (1II) 5 (III)

2.

1
/
Vt v, v

Figure 12. The shape of the current-voltage characteristic {14) and three voltage regions: (1)
the low-voltage regign with linear function 1, (IT) the mean-voltage region with Schottky or
Pool function 2; (II1) the high-voltage region with quadratic function 3. The voltage values of
V| and ¥, are determined by the continuity condition of the J(V) curve. The scale is arbitrary
for clarity.

This curve is obtained by experiment for insulator materials such as TiOs, Zn§, CdS, Al,O3
and SiC at 7 =77 K.

The inverse case occurs at high temperature and high-energy photon conditions. Under
these conditions the recombination parameters ¢,, ¢j2 and Cp are sufficiently small, that is
Tns 712, Cp ! 5 co, and the time constants Tan, T21 and 7, defined by

Tgn = ! T = Cy) =y (50)
are sufficiently small (table 2). In this case the space-charge transport is described by
equation (24). This equation leads to the displaced functions (24f) and (24g} (in figure 13, the
shapes of these functions are shown). The displaced functions are obtained by experiment for
insulator materials such as Se, Se:As, Si0s, ZnS and CdS and for semiconductor materials
such as Ge and Si. Also, equation (24} leads to the current-voltage characteristic (29). An
example of the function (29) with the quadratic boundary function J ~ E2(L) is shown in
figure 14. This function is typical for SiC.

In the case when W; 4 > 2 eV and W, and W), are sufficiently small (the case of pure
insulators, which are placed in table 1), the space-charge transport is described by equation
(31). This electric field intensity distribution occurs in typical insulators such as anthracene,
TiQ, Al04, CdS, ZnS, ZnO, Sn0; and ZnTe.

A particular case occurs when the potential barrier between a normal atom and the
adjacent vacancy (hole) is sufficiently high. In this case when additional kinetic energy
is given by an external electric field to the valence electron in 2 small portion, electron
transition between a normal atom and the adjacent vacancy cannot occur (the case of heavy
holes, that is p, = 0). This is acceptable for insulators. The space-charge transport under
conditions of heavy holes with the time constants 112 = 15 is described by (19). This
equation leads to Child’s law (23¢), which is obtained by experiment for insulator materizls
such as anthracene, TiO,, ZnS, CdS, ZnTe and Al,Os.
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Table 2. The generation time constant of valence electrons at room temperature, Tp =
10~ exp(Wy/&T), kT = 5 eV.

Wp = Wy — Wy
(eV) T
1.61 0.3 x 10° years
[.09 =~ {1{ days
0.98 1 day
0.92 2.4 hours
0.81 1.5 min
0.69 ls
0.58 10725
0.52 10735
0.40 1075 g
0.29 1077 g
0.18 107¥ g
012 10710 5
J
1 4
0 -
VO i VO 2 v

Figure 13. The displaced current-voltage characteristics (24f) and (24g): 1, the function J =
J{V ~ ¥y} determined by the positive space-charge density distribution *g,(x} = 2V / L2
2, the function J = J(V — ¥y) determined by the negative space-charge density distribution
~gv(t) = —2eVa /L%, The scale is arbitrary for clarity.

=]

b

Figure 14. The shape of the curve (29) determined by the quadratic boundary function.
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The linear function J = ¢V /L with the conductivity parameter {22) defines the chmic
conduction ogq = guang, where the equilibrium concentration ng is #e = pg — nu 0 — N0

Now let us discuss the mechanism of carrier injection from the electrode into the buik.
As an example, let us take into account the mechanism of hole injection from the anode
into the bulk.

Investigating the peint/plane system with the (+)/(—) and (=)/(+) polarity electrodes,
Kao [10] showed that the mechanism of hole injection from the anode into the bulk
corresponds to the mechanism of electron injection from the cathode into the bulk. On
this basis we can assume that the contact surfaces act as a system of points (figure 15).
These surface structures have been verified by many thermal methods [29]. Thus, with this
assumption, at the contact x = ( the valence electrons are pulled away by the external field
from the normal atoms. Next, on the points these electrons are accumulated. Under these
conditions, electron emission from the points of the bulk into the anode cccurs. On this
basis, we can ascertain that the boundary function J = f[ £(0)] exists.

® electron
0 hole

() %
Figure 15. The ionization of atoms in the bulk at the anode: 1, the anode; 2, the bulk; 3, the

microscopic structure of the metal-bulk interface. Electron emission from the bulk surface is
indicated by the arrows,

5. Conclusions

In our work we have presented some results of the analysis of bipolar conduction in
a metal-solid (semiconductor, insulator)-metal system in the steady state. We have
characterized the generation and recombination processes. From these considerations it
follows that the generation processes determine the electric field distribution in the form
E%(x) = ax?+ax+b where ¢ is the material constant, @ and & are constants of integration.
In this case the symmetric injection of carriers is possible (the boundary functions f; and
fo are identical). Under these conditions, the function E(x) is decreasing in the region
x € {0; L/2) and increasing in x € (L/2; L}, that is a negative and positive space charge
occurs in the bulk, Also, the function E(x) can be linear (the singular solutions (245)).
The carrier generation determines the J(V) curve described by (27)—-(28) as well as by
{24f) or (24g). From (24a) and (35)—(38) it follows that there can be x¢ € (0; L). On this
basis, we ascertain that the J(V} curve can be discontinuous. The generation—recombination
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processes can determine the function E{x) in the form (13), (20) and (32). From (20) and
{20a) it follows that the function E(x) can become uniform when the boundary function f,
is linear. For (13), (20} and (32) the J{V) curve can be written as (14}, (21), (23¢), (33)
or (34a). From (21) and (33a) it follows that the J{V} curve can also be discontinuous.
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